
Paper 8, Wednesday 25
th
 May 2016 

Tracking Stress and Workload in the Maritime/Tugboat World 

 

Dimitri van Heel, Sr Project Manager, Teamleader Nautical Operations, MARIN (Maritime Research 

Institute Netherlands), The Netherlands 

Kerstin Klinkenberg, Partner, K + S Projects, Germany 

Prof Benjamin Blankertz, Professor, Technische Universität Berlin, Germany 

Daniel Miklody, Master of Science, Technische Universität Berlin, Germany 

Wendie Uitterhoeve, Project Manager Human factors, MARIN (Maritime Research Institute 

Netherlands), The Netherlands 

Martin Ouwerkerk, Senior scientist, Philips Group Innovation, The Netherlands 

SYNOPSIS 

The Dutch research institute MARIN, the Technical University of  Berlin, Philips and k+s projects 

would like to present the findings of  a pilot study into stress/workload measurements during training 

in a shiphandling simulator. Working on a tug has unique demands, made more challenging by fatigue 

and a high workload, and influenced by special demands such as noise, the intense mixture of private 

and worklife and what often prove to be extreme environmental challenges. 

The objective of this pilot study is to determine the most suitable tool to determine the workload a 

person experiences when executing complex tug manoeuvres. Scenarios are selected strictly 

according to real life on the bridge, focussing on tugboat reality. Measurements include heartbeat rate 

and skin conductivity, plus an EEG, but also include simulator signals. The human body is a very 

sophisticated control circuit, and to choose different ways of looking at the way a human expresses 

himself is like joining puzzle elements to a complete picture. Together they pinpoint what is 

most challenging for the test person.  The findings will be evaluated to assess which signals are most 

suitable to obtain a reliable workload indicator. This tool can be used to study the  impact of job 

procedures, modern bridge design and time/work shift systems, but also to measure the effectiveness 

of training programs. The pilot study  is the follow up of the demonstration of  "Training meets 

Science“ during the maritime conference and exhibition ITS 2014 in Hamburg, initiated and 

organized by k+s projects, University of Applied Sciences Bremen and University of Technology 

Berlin.  

 

INTRODUCTION 

It was in 2014, in Hamburg, where the last ITS took place, when delegates could see “fancy hat 

fashion” in front of a ship handling simulator in the foyer between the ITS exhibition and the 

conference hall. These were the first steps, made of tracing workload and visualizing brain activity in 

a maritime simulator. Students of the Hochschule Bremen where confronted with a tugboat scenario, 

escorting a passenger vessel upstream in an estuary into a lock. Not only students but also tug- 



experts, delegates from your companies literally put their heads in our hands, helping to promote the 

idea of putting more focus on the human factor, which also implicates the appreciation of the work 

done in the wheelhouses and ships on the oceans. In Hamburg, only EEG measurements were taken. 

 

Picture#1 ITS 2014, k+s booth 

The promising results of the EEG measurements demonstrated on the ITS in 2014, led to the initiative 

to go for the next step; the development of a workload indicator. The workload indicator is a number 

that gives an indication of the workload an individual perceives in a certain situation. It provides 

insight in how much effort is needed to deal with the situation.  

A reliable workload indicator can contribute to better results in many fields: The effectiveness of a 

training can be better assessed, since it can tell you how the mental efforts of a trainee develops when 

an exercise is repeated over time. It can also be  helpful when looking at the design of a new terminal 

or port. In this case the workload indicator can be used to find the lay-out which causes the pilot least 

effort. Or when you are designing your operation or work process, the indicator can help you identify 

the most critical phases of the operation. Furthermore, it can be a useful tool when designing bridge 

lay-outs or man machine interfaces, where it can be used to determine in which way data is presented 

to a seafarer in the most effective way. Many more examples can be given in which an objective 

assessment of the experienced workload can be useful. 

In a cooperative project k+s projects, the University of Berlin, MARIN and Philips worked together to 

further develop the workload indicator. The general idea behind this project can be described in one 

sentence: 

Perform bridge simulations with different levels of workload and use separate tools to estimate 

the experienced workload in order to come to a reliable workload indicator. 

In 2015 a number of bridge simulator experiments were executed in which tug masters performed 

easy and difficult tasks. During these experiments multiple physiological parameters were measured. 

The objective of these efforts was to determine which kind of measurements, or which combination of 

measurements can serve as an indicator for mental workload in a nautical environment.  



The simulations were executed on a tug simulator and included electroencephalography, heart rate 

frequency, breath frequency and skin conductivity measurements. Also simulator signals were 

collected. The measurements were evaluated independently and combined to determine if they can 

contribute to a reliable workload indicator.” 

First we will give a definition of workload and then we will look at how workload translates into 

physiological features. After that we explain the set-up of the experiments and guide you through our 

findings: 

WHAT IS WORKLOAD AND WHAT IS ITS EFFECT ON THE HUMAN BODY? 

A simplistic definition of workload is that it is a demand placed on humans [1]. However, the 

workload a person experiences is not only task-specific, it is also person-specific [2]. It is therefore 

better to distinguish between demand and workload. The task demand is the goal that has to be 

attained by means of task performance and is independent of the individual. The demand leads to an 

amount of information processing capacity that is used for the task. This is the so called workload. 

The workload a person experiences depends on individual restrictions. The same task demand will 

lead to different workloads for different individuals. When a task becomes more difficult the 

workload increases. The difficulty of a task is dependent upon context, state, capacity and strategy 

that is used to perform the task. A task may be relatively easy for a well trained person and very hard 

on a novice. After a sleepless night a task will be more difficult, regardless experience. 

The reaction to task demand expresses itself in physiological reactions. The cognitive information 

processing takes place in the brains. Measuring brain activity provides information about this 

cognitive process and is a direct measure for the mental workload.  

The autonomous nerve system regulates physiological reactions like heart rate, blood pressure, breath 

frequency, skin conductivity, adrenaline and other hormones. At moments with increased workload, 

the sympathetic part of the autonomous nerve system activates the body to prepare for the so called 

fight of flight status. More adrenaline for example will increase heart rate at these moments. On the 

other hand, after the stressor has gone, the parasympathetic part starts to rebalance. More relaxation is 

expressed in a lower heart rate for example. 

Physiological measurement relies on evidence that increased mental demands lead to increased 

physical response from the body. Measuring physiological changes is therefore an objective, but 

indirect, measure for the experienced workload. It is the most exact and objective way to find 

workload because it does not require a response/opinion from the person. Sometimes the body tells 

another story than the person, whose oral response may be influenced by unknown or hidden 

motivations. Literature describes different methods to measure workload. As there is no single 

physiological measure that indicates workload with 100% guarantee, the fidelity of a workload 

indicator increases when multiple measures are combined. 

HOW TO MEASURE MENTAL WORKLOAD? 

In this study we focused on brain activity, cardiac activity, respiratory activity and skin conductivity. 

The way in which these activities are measured and what the measurements tell us about workload is 

explained in the following sections. 

Measuring brain activity: 



The brain activity was measured with an electroencephalograph, better known as EEG. It uses 

electrodes placed on the scalp to detect the electrical activity on the surface of the scalp. We used a 64 

channel high quality EEG system with active electrolyte gel contacted electrodes. The EEG signals 

are the changes of voltage measured at the scalp which result from neuronal activity in the brain. A 

very basic and simple abstraction could be, that changes of voltage and frequency are measured of a 

huge pile of electric wires. And it is not only the workload that leaves traces in this pile of wires. The 

acquired signals are a mixture of the true brain activity and other 'noise sources' such as muscle 

activity (in particular of facial and neck muscles), eye movements and blinking and electrical devices. 

It is easy to understand that it needs quite some experience to filter brain activity patterns and 

determine “footprints” of  mental workload. 

With a different degree of success wave patterns can be correlated to a mental workload. Brain 

activity in the theta frequency range (4 to 7 Hz) in frontal brain regions have been found to positively 

correlate with the level of workload, see e.g. [5, 6, 7]. With respect to the more prominent alpha 

frequency band, most studies report a negative correlation of cognitive workload and alpha power at 

parito-occipital scalp locations, see e.g. [8, 6]. However, these studies used tasks in the visual 

modality to induce workload, such that one can only derive the implication of alpha reduction for 

workload in visual resources. In general, the functional role of alpha band oscillations is not yet 

conclusive. Some studies using auditory stimulation even found an increase of alpha activity with 

increasing workload ([9, 10, 11, 12]).  

Measuring cardiac activity: 

With the same amplifier system we recorded an Electrocardiogram (ECG) of the heart in a standard 3 

electrode montage optimized for R-peak detection. During the simulation runs a complete ECG is 

recorded. A schematic representation of an ECG is given in the figure below. From this ECG R-peaks 

are determined and the interval time between two following R-peaks is calculated. 

 

Picture #2, RR interval 

Time traces with these RR intervals are input for analysis. Time domain results like mean and 

standard deviation of RR intervals, as well as variability of the RR intervals are interpreted as 

measures for experiencing mental workload. Literature reports a consistent pattern of cardiovascular 

activity from laboratory and field studies; heart rate increases and heart rate variability (HRV) 

decreases as a function of increases in cognitive workload [13]. 



Using frequency domain analysis methods, a spectral distribution for the RR series is calculated. 

From this analysis, the relative power within the low and high frequency bands and the ratio between 

the LF and HF band powers are used as indicators for experiencing workload. The theoretical reaction 

of cardiac measures to workload are given in the table below. 

Measure  Reaction to higher workload  

Mean RR  Decrease  

Std RR  Decrease  

Mean HF  Increase  

Std HF  Decrease  

RMSSD  Decrease  

LF/HF  Increase  

Power LF  Increase  

Power HF  Decrease  

Table #1, Relation between cardiac activity and workload 

 

Measuring breathing activity: 

The respiration rate increases under stressful attention conditions [14] and as a result of increased 

memory load or increased temporal demands [15]. The breath frequency can be obtained from the 

ECG signal. While breathing the ECG electrodes move relatively to the heart causing small potential 

changes. These potential changes are used to compute the respiration frequency. 

Measuring skin conductivity: 

The participants wore two sensor bracelets, which measured the skin conductivity. The conductivity is 

directly related to the amount of sweat produced by the sweat glands. Therefore, the conductivity is a 

good indicator for the arousal/stress state of a subject. The conductivity will react to a stimulus with a 

certain latency. After an initial rise in conductivity, it will recover again. A value that can be used to 

express the arousal is the increase of conductivity per minute.  

 

Picture #3, Skin conductivity signal and bracelet 

 

SETUP OF THE EXPERIMENTS 



In this study the workload of tug masters in a realistic setting was studied. Tug assist tasks were 

performed on a tug simulator, where a representative 60 tonnes bollard pull ASD tug was simulated. 

The experiment was executed on one of MARIN’s tug simulators in the Netherlands.  

The tug simulator has a 270° visual image and an additional monitor provides the view astern. The 

simulator is equipped with controls for the thrusters and tow winch and displays with indicators 

showing ship information like: the engine revolutions, thruster angles and parameters such as the 

speed, rate of turn, force in the tow line, wind speed and direction, etc. Also a radar screen with 

electronic chart and a conning display were fitted .The tug captains were instructed via  VHF orders 

from the instructor.  

 

Picture#4, Simulator setup 

Physiological measures were obtained in the ways described in the previous section. EEG, ECG, 

external marker signals and simulator data are synchronised with LabstreamingLayer [16]. The skin 

conductor bracelets used a local data storage. Prior to and at the end of the tests, the bracelets had to 

be synchronised with the other data recordings. 

Prior to the experiment, the candidates were asked to fill in a perceived stress scale. This rating 

indicates the amount of stress the candidates experienced during the previous month. After each run, 

the candidate quantified the perceived mental effort using the Rating Scale of Mental Effort (RSME). 

Synchronised video recording of the candidate in the simulator, the captain’s view, physiological 

measurements and the radar screen were taken to capture an overall picture of the run.  

 



 

Picture#5, Synchronised video recording 

10 tug captains from MARIN’s network participated in this experiment. All men, in age between 30 

and 65 years old, with different levels of experience in ASD tug driving. They participated voluntarily 

in this experiment and received a compensation for their participation. They received participant 

information in advance and went through a short briefing at the beginning of the experiment in which 

objectives, procedures, protocol and their privacy rights were addressed. They signed an informed 

consent. 

PILOT EXPERIMENT 

The study consisted of two distinct phases. In the first phase the technical set-up of the experiment 

was tested and different scenarios were evaluated. The insights gained in this phase were used to 

optimize the scenarios and test protocol for the second phase. The pilot experiment was executed in 

three days. Three tug captains participated. 

In the first phase, or pilot experiment, three scenarios were tested:  

Scenario 1, bow-to-bow operation: 

In this scenario the tug was escorting a large container vessel en-route to the port of Rotterdam. This 

scenario was divided in several periods of low and high workload: 

Condition1 – free sailing (low workload): The tug master was instructed to follow the container vessel 

and keep station at the starboard quarter.  After 5 minutes the tug was ordered to reposition to the bow 

and wait there for further instructions. 

Condition 2 – connecting (high workload): The tug was ordered to approach the bow of the ship to 

receive the messenger line. The bow-to-bow position was maintained for 5 minutes. The tug was 

typically 15-30 m in front of the container vessel, sailing astern at 7 kts. This condition is referred to 

as high-1. 



Condition 3 – pulling (high workload): This condition started with the connection of the towline. The 

tug master was ordered to keep a constant tow force and direction. After five minutes the towline was 

disconnected and the tug was ordered to reposition to the starboard quarter of the ship. This condition 

is referred to as high-2. 

When the tug reached the original start position, the sequence was repeated.  

 

Picture #6 , Experiment design bow-to-bow pulling scenario 

 

 

Picture #7, bow-to-bow pulling scenario 

Scenario 2, n-back task: 

The n-back task is commonly used in neuroscientific research as a manipulation tool for cognitive 

workload. N is typically chosen between 0 and 3 in order to induce different levels of workload. We 

used this to have a condition comparable to common research and to see how much our bow-to-bow 



scenario corresponds to the neural patterns of this commonly known task. We used an auditory 2-back 

task, where the subject had to follow a stream of spoken numbers. If the last number heard 

corresponded with the digit 2 back, he had to press a button. The digits 1-9 were used with 3 s 

interleave randomly (75%) and forced 2-back repetition (25%) to get a reasonable amount of 

repetitions. The 2-back was played auditorily to keep a realistic behavioural scheme of the captain. 

There were two conditions, 4 mins each: 

Condition 1: Free Sailing Condition (low workload): In this condition, the same low workload task of 

the bow-to-bow scenario is induced for comparison. 

Condition 2: Free Sailing with 2-Back Condition (high workload): The 2-back task was used 

additionally to the Free Sailing to induce a higher workload while keeping the primary task constant. 

Both conditions were repeated five times resulting in a total duration of 40 minutes for the whole 

phase. 

 

Picture #8, Experiment design, N-back task 

Scenario 3, pull back operations: 

In this scenario a typical offloading operations from a Single Point Mooring was simulated. In this 

kind of operations an oil tanker is connected to a buoy with a hawser to receive oil from an oil 

producing platform. A tug is used to provide a pullback force to prevent the tanker from moving 

forward and come in contact with the buoy. In constant conditions this is a low workload scenario. In 

our scenario the high workload was introduced by a sudden increase and rotation of the wind, which 

led to a sudden rotation of the tanker. The tug master had to keep a constant pull and had to maintain a 

6 o’clock position with respect to the tanker 

RESULTS OF THE PILOT EXPERIMENT 

The pilot experiment showed that the physiological measurements can be executed in a realistic set-up 

without too much degradation of the signals. Although some interference occurred, signal quality of 

ECG and EEG measurements remained sufficiently high. The tug masters provided good feed-back to 

improve the scenarios. The N-back task was graded as the most demanding task, requiring 



considerable mental effort. In general the bow-to-bow operations were not regarded as very difficult. 

Even stationing close to the bow was regarded as a normal operation, requiring little effort. However, 

this changed when the wave height was increased and visibility reduced. Under these conditions the 

bow-to-bow operations were graded equally demanding as the strenuous N-back task. 

Scenario 3, the pull-back operation was regarded as quite difficult. However, the tug masters acted 

very differently on this task. While one captain really struggled to achieve the task at hand, others 

decided it was too difficult and continued the run without really trying to achieve the requested 

position and pull back force.  

Overall the first experiment showed that it was possible to measure good data and with this data it was 

possible to determine EEG classifiers for predicting high and low workload. 

It became clear that the time needed for briefing, preparation, executing the three different scenario’s 

and debriefing took more than 4 hours. Our aim to test two candidate’s per day and to collect 

sufficient repetitions of the same conditions per candidate were in conflict with this. Based on the 

results of the pilot in combination with the above remarks, it was decided not to repeat scenario 3 in 

the second experiment, but instead focus on bow-to-bow operations. The N-back task was considered 

a valuable scenario for comparison. 

FINAL EXPERIMENT 

The second simulation session was executed in a five day period. In this period ten tug captains 

participated, who all performed scenario 1, the bow-to-bow operations twice, and scenario 2, the N-

back task, once. At the end of the week a demonstration session was given to interested parties. 

During the experiment a lot of data and movie material was collected which were analysed by 

different parties. TU Berlin was responsible for the EEG analysis, Philips analysed the results of the 

skin conductivity measurements, and MARIN did an analysis of the ECG and simulator data. From 

the 10 participants one of the candidates became sick during the simulations. Therefore his results 

were not valid for further use.  

SUBJECTIVE RESULTS 

After each run, the candidates rated the perceived mental effort during that run. The results are 

presented in the table below. The overall average shows that the candidates experienced the second 

bow-to-bow scenario as less demanding than the first and the n-back task. This can be due to the 

learning effect. It is also seen that the rating of the N-back task is either much higher or much lower 

compared to the bow-to-bow scenario. It is possible that candidates rated only the demand needed for 

manoeuvring. Although the N-back task is a validated tool to increase task demand, it is possible that 

differences in individual strategies contribute to the amount of workload experienced by the 

candidate. The score reflects the evaluation of an entire run and does not distinguish between low and 

high workload phases within the run.  

Candidate RSME  

Bow-bow-1 

RSME 

N-back 

RSME  

Bow-bow-2 

1 5 5 15 

2 40 70 60 

3 40 70 30 

4 40 10 30 

5 71 105 38 



6 38 73 47 

7 40 25 15 

9 71 26 38 

10 60 40 60 

Average 45 47 37 

Table #2, RSME scores per simulation run 

EEG ANALYSES AND RESULTS  

With spectral analyses the occurrence of specific wave patterns over a longer period of time can be 

determined. The aim of the analyses is to determine so called classifiers. A classifier can be described 

as a wave pattern that is indicative for high or low workload. In other words: a pattern of activity in  a 

specific frequency band in a certain area of the brain is linked to assumed periods of high and low 

workload.  

We have seen in the spectral analysis, that the data is strongly affected by artifacts. Apart from noise 

of the technical devices, there are artifacts from muscle activity as well as from eye movements. 

Furthermore, there may be motion artifacts due to the motion of the electrode cables induced by head 

and trunk movements. The muscular and ocular artifacts are indicative of the workload condition for a 

number of participants and could in principle be used for the workload classifier. However, we 

focused on finding a classification method that doesn’t use those artifacts.  

To find the classifiers, first the data was filtered and both automatic and manual artifact reduction was 

applied. This resulted in a cleaned EEG signal. For each participant a spectral analysis was made in 

which the density over the frequency range was determined for each of the electrodes. A grand 

average was determined showing the average density distribution over the scalp.  

The grand average of the bow-to-bow task is shown in the figure below. The most informative plots 

are the scalp maps of the r2 scaled difference of high minus low workload condition, which are at the 

bottom of the figure. The four maps correspond to the four frequency intervals that are shaded in the 

plot of the power spectral density. There is one for the theta range, two for alpha and one for beta. In 

general the differences are very small.  



 

Picture #8, Grand average of the spectral analysis of the bow-to-bow task 

The classifiers were determined by a machine learning tool that finds linear combinations of features 

that characterizes or separates two events (in our case these events are periods of high workload and 

periods of low workload).  

The classifiers were determined in the first part of each scenario and tested in the second part. It 

proofed easier to determine accurate classifiers for phase 2 (the N-back task). Transferring the 

classifier between the two phases 1 and 3 does not degrade the performance appreciably. The results 

of the classifiers were plotted for each of the simulations done. These plots show the ‘linear classifier 

output’ which is a dimensionless value connected to how sure we are about the class (low or high 

workload). The figure below shows the linear classifier output for candidate seven. The values refer to 

one minute windows. Negative values correspond to low workload, positive values correspond to high 

workload. The periods of low workload and periods high-1 and high-2  are indicated in this plot as 

well. It can be seen that the candidate experienced the first period of high workload more demanding 

than the second. A possible explanation is the learning effect: He already knows what to do in the 

second repetition. According to the EEG, five candidates experienced the high-1 condition as more 

demanding, while four candidates experience the high-2 condition as more demanding. 

 



 

Picture #9, Linear classifier output candidate 7 

The accuracy of the classifiers is expressed in the normalized loss.  Different pre-processing methods 

were used which resulted in different classifiers. Method Ca, which uses MARA artifact removal [17] 

in a band from 1-20 Hz, worked best, with lowest normalized losses for the different candidates. It 

should be noted that for each candidate a candidate specific classifier was determined.  

 

 

Picture #10, Classifier validation for different (pre)processing methods 



ECG ANALYSIS AND RESULTS 

The ECG measurements were filtered and RR time traces were extracted. The RR time traces were 

analysed in both time domain and frequency domain. The time domain analysis provides inter beat 

rates and heart rate frequencies (averages and standard deviations). Furthermore the RMSSD value is 

given. This is the root mean square of the sequential differences for successive inter beat periods. 

With spectral analysis the power distribution  in both the low frequency (LF) and high frequency (HF) 

band could be determined. Statistics are given for the absolute power in the LF and HF power band, 

the LF/HF ratio and the LF and HF normalized power. A comparison was made for different phases 

of the experiment. Table #3 shows the results per candidate for each of the time blocks: low, high-1 

and high-2. Each of these time blocks lasts around five minutes and the values expressed are average 

values.  

# condition mean_RR std_RR mean_HF std_HF RMSSD LF/HF LF power HF power LF n.u. HF n.u. EDR

1 low 0.83 0.031 72.48 2.80 0.013 2.64 1.77E+02 6.75E+01 72.45 27.53 0.182

high 1 0.82 0.029 73.14 2.61 0.013 6.17 3.80E+02 6.15E+01 86.03 13.94 0.229

high 2 0.86 0.029 69.86 2.37 0.014 3.87 3.01E+02 7.79E+01 79.40 20.53 0.223

2 low 0.75 0.026 80.18 2.78 0.017 1.91 2.96E+02 1.61E+02 63.56 36.34 0.244

high 1 0.74 0.027 81.23 2.90 0.016 2.41 2.98E+02 1.27E+02 69.44 30.54 0.234

high 2 0.75 0.028 80.41 2.98 0.016 3.09 3.73E+02 1.13E+02 72.12 27.85 0.226

3 low 0.71 0.027 84.96 3.24 0.010 15.01 4.09E+02 2.72E+01 93.59 6.40 0.125

high 1 0.66 0.032 90.91 4.28 0.011 34.53 7.58E+02 2.16E+01 96.77 3.22 0.125

high 2 0.70 0.030 85.92 3.64 0.010 19.98 4.50E+02 2.67E+01 94.60 5.39 0.125

4 low 0.71 0.040 85.87 5.06 0.012 7.66 3.62E+02 4.93E+01 85.07 14.91 0.133

high 1 0.70 0.032 86.68 4.10 0.010 4.16 1.97E+02 4.78E+01 80.48 19.51 0.125

high 2 0.73 0.048 83.32 5.79 0.016 8.31 6.12E+02 7.54E+01 88.11 11.85 0.123

5 low 0.76 0.066 79.72 6.81 0.024 13.16 2.15E+03 1.54E+02 91.73 8.25 0.215

high 1 0.74 0.044 82.71 4.73 0.017 12.92 7.10E+02 8.93E+01 89.56 10.40 0.193

high 2 0.82 0.067 73.61 6.14 0.026 8.78 1.49E+03 1.78E+02 88.30 11.68 0.183

6 low 0.82 0.016 73.52 1.46 0.006 7.61 4.83E+01 1.14E+01 81.89 18.07 0.263

high 1 0.79 0.012 76.45 1.15 0.005 5.09 2.00E+01 4.94E+00 81.88 18.08 0.289

high 2 0.81 0.016 74.50 1.43 0.006 4.56 4.24E+01 1.16E+01 80.34 19.63 0.256

7 low 0.68 0.019 89.15 2.49 0.008 5.46 1.22E+02 2.53E+01 79.54 20.42 0.298

high 1 0.61 0.019 99.61 3.09 0.006 4.09 6.54E+01 2.10E+01 75.37 24.50 0.319

high 2 0.68 0.021 89.56 2.87 0.008 5.56 1.42E+02 2.93E+01 76.20 23.75 0.289

9 low 0.55 0.044 110.86 9.29 0.014 3.06 3.02E+02 1.17E+02 72.85 27.10 0.144

high 1 0.50 0.043 121.65 10.54 0.014 2.95 3.36E+02 1.20E+02 70.89 29.09 0.151

high 2 0.51 0.046 118.69 11.76 0.015 2.38 2.95E+02 1.25E+02 69.67 30.29 0.147

10 low 0.80 0.033 75.56 3.19 0.013 6.96 4.19E+02 6.09E+01 86.56 13.42 0.202

high 1 0.76 0.024 79.37 2.57 0.009 7.17 2.02E+02 2.85E+01 87.21 12.78 0.215

high 2 0.78 0.026 76.59 2.51 0.011 8.69 3.01E+02 3.43E+01 89.56 10.44 0.198

average low 0.73 0.034 83.59 4.13 0.013 7.05 4.77E+02 7.49E+01 80.81 19.16 0.201

average high 1 0.70 0.029 87.97 4.00 0.011 8.83 3.30E+02 5.80E+01 81.96 18.01 0.209

average high 2 0.74 0.034 83.61 4.39 0.014 7.25 4.45E+02 7.46E+01 82.03 17.94 0.197

Table #3, Summary of ECG measurements 

The mean and standard deviation of the inter beat interval RR show consistent decrease in condition 

high-1 compared to condition low. In condition high-2 the value is mostly comparable with condition 

low. The average heart frequency shows consistent increase in condition high-1, while the increase is 

inconsistent in high-2. 

We also observe a good correlation between decrease in heart rate variability and increase in 

workload. The standard deviations of  the inter beat interval, heart rate frequency and the RMSSD in 

general decreased in condition high-1 as may be expected. Changes in RMSSD are small and the 

measure seems not te be a clear indicator. 

The expected correlation between LF and HF power distribution and high/low workload were not 

found. These measures seem less suitable to use in a reliable workload indicator. Since the workload 



may not be uniformly distributed in the defined workload periods, it may be that average values 

cancel out a lot of the available information.  

SKIN CONDUCTIVITY ANALYSIS AND RESULTS 

The sum of amplitudes of skin conductance responses per minute is plotted against time. This value 

gives a good indication of the arousal of the candidate. Of the 10 candidates only five were 

responders. Meaning, that 50% of the measurements gave results that could be analysed. One of them 

was the participant that was already excluded from the measurements due to sickness, so only results 

of four candidates remain. The average value of the sum of amplitudes, measured at the dominant 

hand, of the four remaining candidates is given in table #4. The averages are given for the bow-to-

bow pulling and the N-back task scenario. The high workload conditions result in a higher skin 

conductivity. This is more significant in the N-back task scenario than in the bow-to-bow pulling 

scenario. 

Condition Bow-bow N-back 

Low 2.012 2.912 

High-1 2.227 4.739 

High-2 1.710   

Table #4, average values of sum of amplitudes of skin conductance in microSiemens of 4 candidates 

An example of the results for one candidate is given in the figures below. The first figure 

demonstrates the development of the sum of amplitudes of skin conductance responses over time. The 

blue windows mark the three runs (scenarios) executed in the simulator. The second figure shows a 

more detailed example of the N-back task for the same candidate. The high workload periods are blue 

coloured. In most cases, the values are higher during the N-back scenario’s.  The results for this single 

candidate suggest  a good correlation between the high workload events and the increase in 

conductivity.  

 

Picture #11, Development of Skin conductivity over time 



 

Picture #12, Detailed plot of Skin conductivity during N-back tasks 

 

COMBINED RESULTS  

When results of different physiological measurements and simulator signals are plotted over the same 

timeline, it is possible to interpret the physiological measures within context of the simulator run. 

Below an example is given for a candidate executing the bow-to-bow scenario. The low conditions 

are marked with light blue lines, high-1 and high-2 conditions respectively with green and red lines.  

This example demonstrates the common findings that both EEG classifiers and heart frequency are 

good indicators for mental workload. The decrease in variability of the heart rate frequency was not 

always as expected. Absolute LF and HF power time traces do not correlate very well with workload. 

The indicators give the same signal: keeping station in front of the bow is strenuous. 

Once we know that we are able to measure workload using physiological measures, we can apply this 

on the total time trace and study the moments in between the selected 5 minute periods. The 

additional information about steering and propulsion actions as well as the line length and force help 

us to complete the total picture of causes and effects on workload. 

The highest physiological reactions are seen when the tug is swung around and the tug master 

performs his approach towards the bow (in between low and high-1 condition). Also for the moment 

of line connection (between high-1 and high-2) physiological measures indicate a high workload. 

Once the line is connected the situation becomes easier to handle. On hindsight this can be explained 

by the fact that the line makes the stationing tasks less difficult.  

In periods of increased physiological reactions we also see increased steering and telegraph actions. 

The changes in rudder- and telegraph settings, and the number of changes within a certain time 

period, seem to be linked to the workload as well. They are probably valid input for a workload 

indicator, but this has to be further investigated. 



 

 



 

Picture #12, Physiological measurements and simulator signals in bow-to-bow scenario (period ‘low’ 

is marked with blue dashed lines, period ’high-1’ is marked with green dashed lines and period ‘high-

2’ is marked with red dashed lines. 

  



DISCUSSION OF THE RESULTS 

This study shows that it is possible to determine variations in workload measuring different 

physiological features and that it looks very encouraging  that ship related parameters can be used to 

enhance this process. The outcome can be a relative workload indicator, with which it is possible to 

determine changes in workload level. Further analyses will be executed by MARIN and TU Berlin to 

develop the workload indicator. 

The experiment also showed that EEG signals are a great contribution, but that it is also very 

troublesome to carry out experiments using (wet) EEG caps. Not only does it take about 45 minutes to 

prepare the cap, each participant will also have to go through a calibration session to determine the 

individual classifiers. However, it is a great tool to calibrate the other measurement techniques and to 

achieve greater insights in what cognitive processes are involved in manoeuvring a ship. 

Heart rate, conductivity and ship signals showed very promising first results, to an extent that the 

workload indicator may be achieved without the necessity of having to use an EEG system. It should 

be studied if wire-less dry-cap systems can provide sufficient accuracy in the future, or that other tools 

can replace the EEG in total. 

Although the aim is to develop a generic workload indicator, it is expected that a person specific 

workload indicator will give better results due to the fact that physiological reactions may differ a lot 

from person to person. A short calibration session to find the tell tale individual classifiers, may be 

necessary. 

A big by-catch of this study is the amount of appreciation we received from the tug masters who 

participated in this study. They have to perform a difficult job in sometimes harsh conditions and the 

work pressure they are under is something that should not be underestimated. They feel that this is not 

always receiving the attention it deserves. 

In this experiment, the captains were sitting in a chair for 3 to 4 hours. Therefore, changes in heart 

rate due to physical exercise can be excluded. When physical activity is part of the task execution, 

heart rate itself will be less reliable as a mental workload indicator. Application of the outcome of this 

study on for example navigators standing on the bridge is not directly possible. It could be necessary 

to look for other workload measures in other application fields. 

ROAD AHEAD 

In 2016 MARIN will use machine learning techniques to determine the workload indicator with the 

signals gathered in this study. This follows the same protocol as used in EEG classification, but now 

the input signals are not only brain waves, but heart, conductivity, and simulator signals will be 

included as well. The idea is that the different signals will be weighted and summarized into one 

signal and cross checked on the simulator data. This signal will be the so-called workload indicator.  

We also foresee to review the results of the analysis with the tug masters. The video recordings of the 

simulations, together with the newly developed workload indicator, will be shown to the tug masters 

in order to receive their feed-back on it.  

It is believed that a reliable workload indicator can be constructed based on the tools that we have 

studied. However, more tools are available to measure workload. Therefore, we will seek cooperation 

with other scientific and maritime stake holders to improve the workload indicator. Improvements can 

be achieved by inclusion of other physiological parameters, like eye-blink rate, pupil diameter 



etcetera. Another whish is to be able to present the workload indicator real time in combination with 

video recordings, like the example in the picture below. Further research is necessary to  translate the 

results of our study to other types of ships, operations and sailing tasks. This means more and 

different equipment and experiments with more candidates. To be able to test the suitability on board, 

less intrusive tools are necessary.  

 

 

Picture #13, Synchronised video recording presented with  real time workload indicator. 

 

ETHICAL ASPECTS: 

The conversation always started in the same way, when our test persons got prepared with “hat and 

wires”: “Now you can look into my brain, can you guess my thoughts?” These questions may seem to 

be jokes but always come with a glimpse of uncertainty.  

It is a big step – adding a clinical or medical touch to the industrial maritime world. Of course we 

can’t read thoughts, but EEG Data, heart rate, and skin conductivity - they can tell an individual story 

about a very distinct, highly developed system, namely human biology.  

If you are a ship’s engineer, you should learn to deal with systems, cooling waters circuits, exhaust 

gas systems, fuel etc.  In our case, we have to deal with an even more sophisticated and complex 

individual system. Heartbeat, sweat or brain activity gives us valuable information as to what affects 

an individual, including job and private life related factors.  In this study, the goal was to collect 

information to evaluate how demanding a certain job task is. This means: 

 Dealing with individual personal data, 

 Bringing the test person into a stressful situation to observe how and when he reacts under 

pressure. 



 
It should be regarded as a highly esteemed gesture if someone lets us participate in a situation, where 

he/she might fail, reaches his/her personal performance limits, e.g. starts sweating, starts showing 

anger. This is definitely a undesirable situation for the test person, especially since it takes place under 

observation by a stranger. It needs quite a bit of self-confidence to step voluntarily into such a 

situation. But fortunately, there are persons, who are open to supporting us, allowing the scientists at 

the TU Berlin and in Wageningen at MARIN to do their research. They participate because they are 

convinced of the “Why?” that stands behind this all. 

This deserves a huge amount of appreciation and of explanations about what is going to happen with 

their data. The right of transparency of the “how?”, “why?” and “what for?” belongs to them. An 

ethical frame and guidelines should be followed.  

In our study, the data are anonymized. It is, so to say, a sheltered environment, because there is no 

connection to any work-relationship, no data flow to any boss or company. We only tested adults. 

And the amount of discomfort is related to what is expected in reality. The results are used to find an 

objective scale of high and low workload, independent from individual influences: a workload index 

for the maritime branch. A tool, which should help to increase safety on board of ships. 

What if such a tool is used in the future for assessment purposes or when it is applied in an employee-

boss team setting? This would bring us to another discussion. A combination of personal rights, 

labour and employment rights, as well as philosophy and business ethics and – identity will need to be 

regulated.  
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